ООП СОО(Φ ГОС СОО и Φ ОП)

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Белгородской области Администрации Ракитянского района Белгородской области МОУ «Пролетарская средняя общеобразовательная школа №2»

PACCMOTPEHA

Протокол №__ 1 от "_28__"августа 2023 г.

Руководитель

МО учителей математического направления

Убер А.М Бондаренко

СОГЛАСОВАНА

«29» августа 2023г

Заместитель

директора

О.А Полякова

УТВЕРЖДЕНА

Приказ от «31»августа 2023г №318

Директор

И.В.Присада

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика. Базовый уровень»

для обучающихся 11 класса

Составитель: учитель физики Головко Валентина Николаевна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа составлена на основе авторской рабочей программы А.В.Шаталиной «Москва. Просвещение, 2017г.». Данная программа реализуется при использовании учебников «Физика 10,11» линии «Классический курс» авторов: Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, В. М. Чаругин / Под ред. Н.А.Парфентьевой и разработана в соответствии:

 Федерального государственного образовательного стандарта среднего общего образования (утвержден приказом Минобрнауки России № 413 от 17 мая 2012 года) с изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г., 7 июня 2017 г.

В программу внесены изменения с учётом ФОП СОО воспитания и концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.(для 11 класса)

Содержание программы по физике направлено на формирование естественно-научной картины мира обучающихся 10—11 классов при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа по физике соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественно-научными учебными предметами. В разделах «Механика» количество часов увеличено на 3час, в разделе «Молекулярно-кинетическая теория» количество часов увеличено на 1 час за счет уменьшения часов, отведенных на резерв.

11 класс . В разделах « Геометрическая и волновая оптика» количество часов увеличено на 1 час, «Электромагнитная индукция» количество часов увеличено на 1 час за счет уменьшения часов на повторение.

Основными целями изучения физики в общем образовании являются:

• формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;

- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

- приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;
- освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;
- понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;
- овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- создание условий для развития умений проектно-исследовательской, творческой деятельности.

На изучение физики (базовый уровень) на уровне среднего общего образования отводится 136 часов: в 10 классе – 68 часов (2 часа в неделю), в 11 классе – 68 часов (2 часа в неделю).

СОДЕРЖАНИЕ КУРСА ФИЗИКИ

Введение. Физика и физические методы изучения природы 1 час

Физика — фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон — границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура¹.

Механические явления 30 час

Границы применимости классической механики. Важнейшие кинематические характеристики — перемещение, скорость, ускорение. Основные модели тел и движений. Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона. Импульс материальной точки и системы. Изменение и сохранение импульса. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Основы молекулярно-кинетической теории 11 час

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева—Клапейрона. Агрегатные состояния вещества. *Модель строения жидкостей*.

Основы термодинамики7 час

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины.

Основы электродинамики 16 час

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор. Постоянный электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Колебательный контур. Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Электромагнитные колебания. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Основы электродинамики (продолжение). 9 час 11 класс

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества. Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь

Демонстрации

Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Лабораторные работы

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.

.

Колебания и волны 15 час

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. Вынужденные колебания, резонанс. Поперечные и продольные волны. Энергия волны. *Интерференция и дифракция волн*. Звуковые волны.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора. Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания

Лабораторная работа

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Оптика 13 час

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы. Волновые свойства света. Скорость света.

Интерференция света. Когерентность. Дифракция света. Дифракционная решётка Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений. Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света. Оптические приборы.

Полное внутреннее отражение.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Лабораторные работы

Измерение показателя преломления стекла.

Определение оптической силы линзы и фокусного расстояния собирающей линзы .

Измерение длины световой волны»

Элементы теории относительности 3 час

. Границы применимости классической механики. Постулаты специальной теории относительности: принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

Квантовая физика 17 час

Гипотеза Планка о квантах. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Планетарная модель строения атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

Состав и строение атомного ядра. Ядерные силы. Дефект массы и энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер. и энергия связи нуклонов в ядре. Ядерная энергетика. Применение ядерной энергетики. Влияние ионизирующей радиации на живые организмы. Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы. . Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод. спектральный анализ (спектроскоп), лазер.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Лабораторные работы:

Наблюдение сплошного и линейчатого спектров.

Исследование треков частиц (по готовым фотографиям).

Определение импульса и энергии частицы при движении в магнитном поле

•

Строение Вселенной 5 час

Современные представления о происхождении и эволюции Солнца и звезд. Строение солнечной системы. Система «Земля – Луна». Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура солнца

и состояние вещества в нем, химический состав). Источники энергии и внутреннее строение Солнца. Классификация звезд. Звезды и источники их энергии. Физическая природа звезд. Наша Галактика (состав, строение, движение звезд в Галактике и ее вращение). Происхождение и эволюция галактик и звезд. Представление о строении и эволюции Вселенной. Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение. Млечный Путь — наша Галактика. Положение и движение Солнца в Галактике. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

.

Обобщающее повторение

10 класс -3 час

11 класс 6 час

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением; готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем; планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки; осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне; определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых физических явлениях; разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов; вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия; развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики; давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения;

ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во вне-урочной деятельности;

распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы; оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям; предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости; осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям; владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности;

принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности;

признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при

описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебноисследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца; строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебноисследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

<u>10 класс</u>

No	Раздел	Количество	Количество	Контрольная работа	Лабораторные работы
		часов по	часов по		авторская /рабочая
		авторской	рабочей		
		программе	программе		
1.	Введение. Физика и	1	1	0	0
	физические методы				
	изучения природы				
2.	Механика	27	30	2	5/7
	Кинематика	6	9		1/2
	Динамика	9	9		2/3
	Законы сохранения в	7	7		1/1
	механике. Статика.	5	5		1/1
	Гидромеханика				
3.	Молекулярно-	10	11	1	1/1
	кинетическая теория				
4.	Основы термодинамики	7	7	1	0/0
5.	Основы электродинамики	16	16	1	2/2
	Электростатика	6	6		
	Законы постоянного тока	6	6		

	Ток в различных средах	4	4		
6.	Обобщающее повторение	7	3	1	
	Итог	68	68	6	8/10

Контроль уровня обучения. Физика 10 класс.

$N_{\underline{0}}$	Наименование	Источник	Кодификатор ЕГЭ	Кодификатор ВПР
	разделов и тем			
	Контрольная работа №1 <i>«Основы кинематики»</i>	Дидактические материалы Физика 10 класс / А.Е.Марон, Е.А.Марон. – М.:	1.1.1-1.1.9	2.1-2.6
	Контрольная работа №2 «Основы динамики и законы сохранения»	Издательство «Дрофа», 2014 г. Тематические контрольные и самостоятельные работы по физике 10	1.2.1-1.5.5	
	Контрольная работа № 3 <i>«Основы молекулярно-кинетической теории»</i>	класс / О.И.Громцева. – М.: Издательство «Экзамен», 2012 г.	2.1.1-2.1.17	3.1-3.7
	Контрольная работа № 4 <i>«Основы термодинамики»</i>		2.2.1-2.2.11	
	Контрольная работа № 5 «Законы постоянного тока».	Дидактические материалы Физика 11 класс / А.Е.Марон, Е.А.Марон. – М.: Издательство «Дрофа», 2014.	3.1.1-3.2.10	4.1-4.7

	Тематические контрольные и самостоятельные работы по физике 10 класс / О.И.Громцева. – М.: Издательство «Экзамен», 2012 г.	
Итоговая контрольная работа	Тематические контрольные и самостоятельные работы по физике 10 класс / О.И.Громцева. – М.: Издательство «Экзамен», 2012 г.	

Темы лабораторных в 10 классе

Лабораторная работа №1 Измерение мгновенной скорости и ускорения с использованием секундомера или компьютера с датчиками;

Лабораторная работа №2 Изучение движения тела по окружности;

Лабораторная работа №3 Изучение движения тела, брошенного горизонтально;

Лабораторная работа №4 Измерение жёсткости пружины;

Лабораторная работа №5 Измерение коэффициента трения скольжения;

Лабораторная работа №6. Изучение закона сохранения механической энергии;

Лабораторная работа №7 Изучение равновесия тел под действием нескольких сил;

Лабораторная работа №8 Экспериментальная проверка закона Гей-Люссака;

Лабораторная работа №9. Изучение последовательного и параллельного соединения проводников;

Лабораторная работа №10. Измерение ЭДС и внутреннего сопротивления источника тока.

<u>11 класс</u>

Раздел	Количество	Количество часов	Контрольная	Лабораторные
	часов по	по рабочей	работа	работы
	авторской	программе		авторская /рабочая
	программе			1 1
Основы электродинамики (продолжение)	9 часов	9часов	1	2
Магнитное поле	5 ч			1/1
Электромагнитная индукция	4 ч	5 ч		1/1
		4 ч		
Колебания и волны	15 часов	15 часов	1	1
Механические колебания	3 ч	3 ч		1/1
Электромагнитные колебания и волны	5 ч	5 ч		
Механические волны				
Электромагнитные волны	3 ч	3 ч		
	4 ч	4 ч		
Оптика	13 часов	13 часов	1	3
Геометрическая и	11 ч	11 ч		3/3
волновая оптика				
Излучение и	2 ч	2 ч		

спектры				
Основы специальной теории относительности	3 часа	3 часа	0	0/0
Квантовая физика	17 часов	17 часов		3/3
Световые кванты	5 ч	5 ч	1	
Атомная физика	3 ч	3 ч		2/2
Физика атомного ядра	7 ч	7 ч	1	1/1
Элементарные частицы	2 ч	2 ч		0/0
Строение Вселенной	5 часов	5 часов	0	1/0
Повторение	6час	6 час	1	
Итого	68 часов	68 часов	6	10/9

Контроль уровня обучения физики в 11 классе

No	Наименование	Источник
	разделов и тем	
	Контрольная работа	Дидактические материалы Физика 11
	№1 «Магнитное	класс / А.Е.Марон, Е.А.Марон. – М.:
	поле. Электромагнитная	Издательство «Дрофа», 2014.
	индукция»	Тематические контрольные и
	Контрольная работа	самостоятельные работы по физике 11
	№2 «Колебания и волны»	класс / О.И.Громцева. – М.: Издательство

	Контрольная работа №3 <i>«Световые волны»</i>	«Экзамен», 2012 г
	Контрольная работа №4 <i>«Световые кванты»</i>	
	Контрольная работа №5 «Атомная физика. Физика атомного ядра»	
2	Итоговая контрольная работа	

Темы лабораторных в 11классе

Лабораторная работа №1 Измерение силы взаимодействия катушки с током и магнита.

Лабораторная работа №2 Изучение электромагнитной индукции.

Лабораторная работа №3 Определение ускорения свободного падения при помощи маятника.

Лабораторная работа №4 Измерение показателя преломления стекла.

Лабораторная работа №5 Определение оптической силы линзы и фокусного расстояния собирающей линзы.

Лабораторная работа №6 Измерение длины световой волны.

Лабораторная работа №7 Наблюдение сплошного и линейчатого спектров.

Лабораторная работа №8 Исследование треков частиц (по готовым фотографиям).

Лабораторная работа №9 Определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Учебно-методическое обеспечение

образовательного процесса.

Учебно-методические пособия для учителя

- Учебник Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский «Физика» классический курс. 10, 11 класс» − Москва, Просвещение, 2021 г.
- о Дидактические материалы Физика 11 класс / А.Е.Марон, Е.А.Марон. М.: Издательство «Дрофа», 2014.
- Тематические контрольные и самостоятельные работы по физике 11 класс / О.И.Громцева. М.: Издательство «Экзамен», 2021 г.

Интернет-ресурсы

- о Анимации физических объектов. http://physics.nad.ru/
- о Живая физика: обучающая программа. http://www.int-edu.ru/soft/fiz.html
- о Уроки физики с использованием Интернета. http://www.phizinter.chat.ru/
- о Физика.ru. http://www.fizika.ru/
- о Физика: коллекция опытов. http://experiment.edu.ru/
- о Физика: электронная коллекция опытов. http://www.school.edu.ru/projects/physicexp